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Abstract
We show that, for sets with the Hausdorff–Besicovitch dimension equal
to zero, the box counting (BC) algorithm commonly used to calculate the
Renyi exponents (dq) can exhibit perfect scaling suggesting non-zero dq .
The properties of these pathological sets (pseudofractals) are investigated.
Numerical, as well as analytical, estimates for dq are obtained. A simple
indicator is given to distinguish pseudofractals and fractals in practical
applications of the BC method. Histograms made of pseudofractal sets are
shown to have Pareto tails.

PACS numbers: 47.52.+j, 02.60.Gf, 05.45.Df

1. Introduction

The notion of fractals was introduced in the 1970s by Mandelbrot and soon became very
fashionable. In the mathematical sense, a set is called a fractal (set) when its Hausdorff–
Besicovitch dimension (dHB) is greater than its topological dimension (dT) [1]. Since fractality
is strictly related to the physically important self-similarity (self-affinity) scaling symmetries
and the renormalization group, it is widely used in physics on all scales: ranging from particle
physics [2] to astrophysics [3], and in various other areas such as solid-state physics [4] or
econophysics [5].

However, in contrast to fractal sets constructed by mathematicians, such as the famous
triadic Cantor set (1883), for physically interesting cases, the algorithms used to construct
corresponding data sets are usually unknown and it is very difficult (or almost impossible)
to calculate their Hausdorff–Besicovitch dimension, Renyi exponents etc in a mathematically
rigorous way. Instead, one considers a zero-dimensional (finite number) subset of data points
and applies a standard numerical algorithm, such as the box counting (BC) algorithm or its
derivatives, which gives the well known log–log plot. A good linear fit is assumed to be
equivalent to the calculation of the corresponding fractal dimensions. Apart from the fact that
the above fit is to some extent arbitrary (see, for example, [6]) and there is no good method to
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calculate ‘error bars’, it will be shown in the following sections that even a perfect fit can be
misleading.

In fact, there are many different mathematical definitions of the fractal (capacity)
dimension that can give different results when applied to the fractal set. These were originally
introduced to physics to characterize strange attractors of dynamical systems [7]. The BC
capacity dimension is closest to the dimension introduced by Kolmogorov [8].

Here, we limit our discussion to the BC method that is the basic paradigm for a practical
computation of the generalized Renyi exponents, dq , defined by [9, 10]

dq = 1

1 − q
lim

N→∞
ln

∑
i p

q

i (N)

ln N
≡ lim

N→∞
ln Y (N)

ln N
(1)

where N is the total number of ‘boxes’ (bins), and pi is the part of the ‘mass’ (i.e. the fraction
of all points) contained in the ith box. In this paper we also deal with sets that are not fractals,
namely the discrete (point) sets. For these sets one defines

pi(N) = ni(N)

ntot
(2)

where ni(N) is the number of data points (‘mass’) in the ith box for a given subdivision
(partition) N and ntot is the total number of data points (‘mass’) contained in all boxes. When
q = 0 (capacity dimension) equation (1) becomes

d0 = lim
N→∞

ln M(N)

ln N
(3)

where M(N) denotes just the number of non-empty boxes. In this case, the number of data
points in particular boxes is irrelevant and this singles out the value q = 0. This is the reason
why the BC method gives a unique result for d0 (see section 2). dq is determined from the
log–log plot of log Y (N) versus log N with N = 20, . . . , 2k , usually with k � 10–30.

Since in practical computations with the BC and derivative methods one always deals with
a finite number of data points, we limit our analysis to discrete sets. In the following section
we obtain an analytic expression for d0 with the set defined by [11, 12]

xn = 1

na
n = 1, 2, . . . a > 0. (4)

The same method is also applied for general discrete sets with an accumulation point, as
well as for divergent series. In section 3, the BC algorithm is applied to calculate the Renyi
exponents with q �= 0 for equation (4). Excellent scaling (linear fit) has been found in full
agreement with analytical estimates, in spite of the fact that the set (4) is not a fractal and its
Hausdorff–Besicovitch dimension equals zero. Also, it is shown that the standard BC method
leads to a violation of the Hentschel–Procaccia (HP) inequality [10]. A modification of the
standard BC method which preserves the HP inequality is analysed as well. Our results can be
generalized to sets with an arbitrary number of accumulation points. In section 4 it is shown
that pseudofractals generate histograms with fat tails, in contrast to fractals. A final discussion
is given in the last section.

2. Capacity dimension of pseudofractals

Clearly, the discrete and countable set (4) is not a fractal and it has a zero Hausdorff–Besicovitch
dimension. However, as has been demonstrated using the dimension function [11] or by direct
application of the BC method [12], numerical computation must give the following analytic
result:

d0 = 1

1 + a
. (5)
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As the method of the analytical estimates of [12] and its generalization will be used
throughout the paper, we now describe this briefly. Assuming the unit size of the whole set,
the size of a single bin is 1/N . Denoting the number of bins by Nsngl (and the number of
corresponding data points by nsngl = Nsngl) with one, and only one, data point inside, one can
easily calculate from equation (4)

nsngl = Nsngl ∼ N
1

1+a . (6)

Since we have a logarithm in (1) and (3), and the limit N → ∞, the constant pre-factor can be
neglected. The remaining data points (nr) are closer to each other than the bin size. Hence, all
those bins are non-empty. The number of such bins (Nr < nr) is equal to the distance of the
point xnsngl from the accumulation point (x∞ = 0) divided by the bin size (1/N ). This gives
the estimate

Nr ∼ N
1
a (7)

and in the limit N → ∞
M(N) ∼ Nsngl + Nr ∼ N

1
1+a + N

1
a ∼ N

1
1+a (8)

which implies the result (5).
From the above proof it is clear that the exponent d0 depends on the rate of change of the

distances between neighbouring points (‘level spacing’) with respect to the length of the whole
interval or, in other words, on the speed of the convergence of data points to the accumulation
point. This enables us to generalize the above result. Also, one can consider divergent sets
(xn → ∞ for n → ∞) by rescaling them to the unit interval. To this end, we define the
convergence rate �x(n) by

�x(n) =
{

|xn − xn+1|/|x1 − x∞| for |x∞| < ∞
|xn − xn+1|/|xn| for |x∞| = ∞.

(9)

This gives the following general formula for the exponent d0

d0 = min

{
lim

n→∞
− ln n

ln �x(n)
, 1

}
. (10)

In particular for equation (4), one obtains �x(n) ∼ 1/na that leads to formula (5). For
slowly converging series, such as 1/ ln n, one has d0 = 1, while for strong convergence (e.g.
xn = e−an) one has d0 = 0. On the other hand for all diverging series (such as na , e+an or ln n)
one always has d0 = 1. Intuitively, slowly converging series seem to be uniformly distributed,
while those exponentially converging seem to be concentrated at the accumulation point (zero
dimensional). Hence, from this point of view, the series with inverse power asymptotic are the
only non-trivial ones.

The above results can be verified numerically by applying the BC method. The results
are displayed in figure 1, where the straight lines correspond to the theoretical predictions.
Actually, for the 104 data points, one can already see an excellent linear scaling in the log–
log plot through more than a dozen binary orders of magnitude—well above what is usually
demanded in practical applications. In addition, the results are in perfect agreement with
formula (10): d0 = 0.50, 0.66 and 0.33 for a = 1, 0.5 and 2, respectively, while for divergent
series,

√
n and n2 (crosses and circles respectively), one obtains d0 = 1.0.

3. Pseudofractals and generalized Renyi exponents

For q �= 0 analytical estimates are ambiguous as we have to deal with the double limit:
limN→∞ limntot→∞, because the probabilities (pi = pi(ni, ntot, N)) do depend on both N and
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2

2

Figure 1. Log–log plots and analytical predictions (lines) for d0 with xn = 1/n (full circles and
solid line), 1/n1/2 (squares and dashed line), 1/n2 (diamonds and dashed-dotted line), and n1/2

and n2 (crosses and circles with one dotted line for both).

ntot. Equivalently, the measure (2) is not well defined. In standard applications of the BC
method one has a fixed number of data points (ntot = const) and the large N limit is estimated.
In this case, for q � 0, one can estimate the sum in (1) as in the derivation of (8), by taking
the partial sum with bins containing only one data point. Namely,

1

1 − q
ln

Nsngl∑
i=1

p
q

i = 1

1 − q
ln

[
N

1
1+a

(
1

ntot

)q]

= const +
1

1 − q

1

1 + a
ln N.

The upper limit can be estimated assuming an equal number of data points in the remaining
bins (Nr ∼ N1/a). One should remember that due to the limited number of data points the
number of bins cannot be too large: 1 � N < n1+a

tot . For finer partitions we reach the
saturation point; there is a constant number of non-empty bins with exactly one data point
inside which corresponds to the value of log Ymax = log ntot (see figures 1 and 2(a), where
log2 Ymax = log2 104 � 13.3). Finally, we obtain an analytical estimate for large N

dq = 1

1 − q

1

1 + a
(q � 0). (11)

For q > 0, estimates become more complicated as truncation of the sum can make it smaller
than one causing the logarithm to have a change of sign. However, for large q one obtains fast
convergence dq → 1 (q → +∞). Again, as is clear from figure 2(a), we obtain very good
linear fits throughout about ten binary orders of magnitude which is usually interpreted as a
sign of fractality and is an excellent agreement with the theoretical estimate.

It has been proven that for fractal set Renyi exponents dq the HP inequality holds [10]

dq � dq ′ for q > q ′. (12)

However, in our case the calculated scaling exponents apparently violate (12) as can be seen
from (11) and from figures 2(a) and 3 (full circles and dashed curve).
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2

2
2

(a)

(b)

Figure 2. Log–log plots for the harmonic series (xn = 1/n) with q = 0 (crosses), 0.25 (full
circles), 0.5 (squares), 0.75 (diamonds) and 1 (circles) with corresponding linear fits (solid lines):
(a) 104 data points (ntot = const) and the standard BC method; (b) the modified BC algorithm.

We note that when calculating dq analytically, for well-defined fractal sets such as the
triadic Cantor set, the resolution for counting data points increases when the bin number
increases. Also, the resolution at a given step (for a given partition) is equal to the bin size
(smallest void intervals are of the bin size). This is in contrast to the standard version of the
BC method, where the data set is fixed during the whole procedure. Now, we modify the BC
method by taking into account for a given partition only those points that are separated from
each other by at least the (current) bin size (i.e. the bin size fixes the resolution). This makes
the computation more involved and time consuming but, in effect, one can recover the HP
inequality.
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Figure 3. d(q) ≡ dq computed for the harmonic series (xn = 1/n) with 104 data points for the
BC (full circles) and modified BC (full squares) methods. The dashed and dotted curves represent
analytic estimates (11) and (13), respectively.

For the modified BC method, in a similar way as for the estimate (11), one obtains the
following analytical formula:

dq = 1

1 − q

[
1

1 + a
− q

a

]
(q � 0). (13)

In addition, one has dq → 0 for q → +∞ (clearly (13) satisfies (12)). This result can
be validated numerically, as is displayed in figure 3 (full squares and the dotted curve for
equation (13)). Again, we have a very good scaling and linear fit. For positive q this method
gives dq that tends to zero quite fast (while it reaches one slightly more slowly for the standard
BC algorithm). Hence, for pseudofractals, the standard and modified BC algorithms give
different results due to the ambiguity mentioned earlier. However, in both cases a good scaling
and linear fit is obtained.

Our conclusions remain unchanged for sets with an arbitrary number of accumulation
points. In particular, the union of two sets with scaling exponents d

(1)
0 , d

(2)
0 in the large number

of bins (N ) limit gives

d0 = 1

ln N
ln

[
Nd

(1)
0 + Nd

(1)
0

]
= max

{
d

(1)
0 , d

(2)
0

}
+

1

ln N

1

N |d(1)
0 −d

(2)
0 | → max

{
d

(1)
0 , d

(2)
0

}
. (14)

As for regular fractals, the scaling exponent of the union is equal to the maximal exponent of
the two sets. However, it should be noted that convergence to this result (in the large N limit)
is slowest (logarithmic) for d

(1)
0 = d

(2)
0 . As the number of non-empty bins is greater than for a

single set, the points in the log–log plot will be higher for N which is not too large. Hence, the
whole plot will be a bit less steep, and for data sets which are not large enough this can lead
to lower estimates of the Renyi exponents and a worse linear fit. Details of this effect depend
on the particular distribution of both sets in the embedding interval and have been verified
numerically. For sets which are not large enough the scaling can be completely lost.
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4. Pseudofractals and fat tails

One is often interested in the probability distribution for a large series of data. In particular,
in recent years there has been a great interest in the so-called Pareto or fat tails [13], where
histograms built out of the data have inverse power-law tails

P(x) ∼ 1/xβ (15)

where P(x) is the probability distribution. Here we show that non-trivial (0 < d0 < 1)
pseudofractals do have this property.

As for the histogram, the time ordering of the data points can be neglected, let us consider
for simplicity a monotonic series {xn : xn+1 � xn}. To satisfy (15) the number of data points
(�n) in the interval [xn+�n, xn] must be

�n =
∫ xn

xn+�n

P (x) dx = C

β

[
1

x
β−1
n+�n

− 1

x
β−1
n

]

where C > 0 is a normalization constant. Substituting C1 = β/C > 0 and f (n) ≡ 1/x
β−1
n

this yields the following simple linear first-order difference equation:

C1 �n = f (n + �n) − f (n)

with the general solution f (n) = C1 n + C2 or, equivalently

xn = 1

[C1 n + C2]
1

β−1

.

For tails (n � C2/C1 but still far from the accumulation point) the constant C2 can be
neglected and finally we have the asymptotic behaviour

xn ∼ 1

n
1

β−1

≡ 1

na
. (16)

Hence, the tail exponent β can be expressed in terms of a or d0 as

β = a + 1

a
= 1

1 − d0
. (17)

The above formula displays the simple relation between the pseudofractal parameter a, the tail
index β and the BC exponent d0.

5. Conclusions

In this paper, we have investigated general sets with accumulation points, that are not fractals,
though they display fractal-like scaling behaviour. The scaling exponent d0 (equation (3))
as obtained by the BC method is given by equation (10). Furthermore, we have found the
analytical formula for dq (for q � 0) for the inverse power series as given by the standard BC
algorithm (equation (11)), that perfectly fits the numerical results (figure 2(a)). The obtained
exponents violate the HP inequality, which can be viewed as an indicator of the pseudofractal
behaviour.

Similar results are obtained for the modified BC algorithm (where the number of data
points taken into account increases with the increased resolution), but in this case the HP
inequality is preserved (see equation (13) and figure 2(b)). Hence, the two schemes give
different dq for the pseudofractal sets. Our results remain valid for sets with an arbitrary
number of accumulation points, where the overall scaling exponent is equal to the maximal
exponent of constituent sets. Also, in this case, one can observe a worsening of the linear fit.

In general, from the point of view of the fractal properties and the BC methods, there are
four types of sets:
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(i) mathematical fractals—sets that are well defined and their fractal properties can be
rigorously proven (i.e. without numerical approximations), such as the triadic Cantor
set;

(ii) physical fractals—finite sets that are (computer) representations of mathematical fractals.
In this case, one obtains good scaling and linear fit with the BC method, HP inequality
holds, and both the BC and modified BC methods (described in section 3) give the same
results;

(iii) pseudofractals—finite sets that are not finite representations of mathematical fractals,
though they show good scaling and linear fit with the BC method. The resulting exponents
violate the HP inequality and the BC and modified BC algorithms give different values for
dq . The general formula for d0, when xn asymptotic is known, is given by equation (10);

(iv) non-fractals—i.e. sets for which the BC algorithm does not exhibit any scaling.

The sets of types (i) and (iv) can be easily distinguished. However, it is quite non-trivial
to distinguish between sets of types (ii) and (iii). Here, one cannot apply the rigorous
mathematical machinery as the whole set is usually unknown. In these cases, numerical
methods lead to nice scaling making them impossible to tell apart. In this context, the violation
of the HP inequality appears to be a simple and useful indicator, in addition to different results
obtained by the standard and modified BC algorithms.

Different classes of non-trivial (0 < d0 < 1) pseudofractals have scaling properties
equivalent to the series {xn = 1/na}. In particular, for q > 0, the BC method gives dq close
to the embedding dimension while for the modified BC algorithm dq approaches zero. For
q � 0, analytical formulae for dq are given by equations (11) and (13), respectively.

Finally, as shown by equation (17), the parameter a of the pseudofractal series is simply
related to the tail index β, as well as to the BC Renyi exponent d0. This means that histograms
made of non-trivial pseudofractal sets have Pareto (fat) tails. This relation is another signal of
possible pseudofractality.
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